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Abstract— Deep Learning (DL) is one of the most popular 

research topics in machine learning and DL-driven image 

recognition systems have developed rapidly. Recent research has 

employed metamorphic testing (MT) to detect misclassified images. 

Most of them discuss metamorphic relations (MR), with limited 

attention given to which regions should be transformed. We focus 

on the fact that there are sensitive regions where even small 

transformations can easily change the prediction results and 

propose an MT framework that efficiently tests for regions prone 

to misclassification by transforming these sensitive regions. Our 

evaluation demonstrated that the sensitive regions can be specified 

by Explainable AI (XAI) and our framework effectively detects 

faults. 
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I. INTRODUCTION 

Deep Learning (DL) driven image recognition system has 
been researched and implemented recently. Since the DL-
driven image recognition system (IRS) is a black box system, 
metamorphic testing (MT) [1]–[3] is the most powerful test 
technique, which automatically generates various test cases. 
MT is a testing technique that automatically generates follow-
up images for new test cases by transforming the seed image 
by specific relations. 

In this paper, we propose another MT approach focusing 
on a sensitive region, where misclassification is more likely 
than others. Fig. 1 shows examples of the MT which adds a 
black dot. Example (a) is a seed image before adding a black 
dot, and it is classified as the gazelle by a DL-driven IRS 
trained by ImageNet [4]. Examples (b) and (c) are follow-up 
images after adding a black dot. Example (b) shows that the 
gazelle was misclassified as a lion when a 10 x 10 black dot 
was added over its face. On the other hand, example (c) shows 
that the image is correctly classified as a gazelle even when a 
50 x 50 black dot is added to the background. They suggest 
that the position on the gazelle’s face should be more sensitive 
than the position on the background to misclassify the seed 
image, i.e. to detect the bug, in the image recognition system.  

Our MT approach aims at the sensitive region, where a 
higher failure detection rate (FDR) can be expected. FDR is 
defined as the percentage of the number of failures detected to 
the number of test cases executed. We also focus on the 
gradient to specify the sensitive region. Fig. 2 shows a heat 
map of the gradient by Grad-CAM [5], one of the Explainable 
AI (XAI) techniques. In Fig. 2(b) the red region indicates the 
highest gradient region while the blue regions indicate the 
lower gradient region. It suggests that the gradient should 
represent sensitivity. 

According to the suggestions, our research questions are: 

RQ1. "Can Grad-CAM properly indicate sensitive 
regions? "  

RQ2. "Is the FDR of our MT framework higher than the 
method that does not consider sensitivity?" 

In this paper, section II shows the background and related 
works. Section III explains our MT approach. Section IV 
describes our MT method. In Section V we experiment to 
compare our MT framework and a traditional MT not 
considering sensitivity. Threats and validity are discussed in 
Section VI.  

II. BACKGROUND AND RELATED WORK  

A. Metamorphic Testing (MT) 

Metamorphic Testing (MT) is a software testing technique 
that addresses the oracle problem [6], a common challenge in 
testing non-testable programs, where determining the 
expected output for a given input is difficult. MT utilizes 
metamorphic relations (MRs) to generate new test cases based 
on existing ones and to assess the software's reliability. 

The procedure for MT is as follows. First, identify the 
System Under Testing (SUT)'s properties and establish MRs 
that describe the relationships between multiple inputs and 
their corresponding oracles. Second, generate an original set 
of test cases, execute them on the SUT, and obtain their 

Fig. 1.  Example of MT that add a black dot. A seed image classified 

as a gazelle (a). A follow-up image added a black dot inside the sensitive 

region (b). A follow-up image added a black dot outside the sensitive 

region(c). 
 

Fig. 2. Visualization of the gradient by Grad-CAM 



oracles. Third, apply the identified MRs to transform the 
original set of test cases into follow-up test cases, 
subsequently executing them on the SUT to acquire the 
corresponding oracles. Finally, verify whether the MRs hold 
for the original and follow-up test cases. If the MRs do not 
hold, a potential fault in the software is indicated. 

In particular, in MT for IRS, an image of the original test 
case is transformed based on MRs to generate the image of the 
follow-up test case. There are two types of transformations 
based on MRs: transformations that transform the entire image 
(entire-based transformation) and transformations that 
transform a part of the region of the image (region-based 
transformation). Examples of entire-based transformations are 
affine transformations such as image rotation, scale, shear, and 
translation [7], as well as changing the weather or time of day 
in the road image [8]. Examples of region-based 
transformations are color conversions such as gray scaling, 
color inversion, brightness, etc. [9], [10], filtering 
transformations such as blurring and Gaussian noise [11], and 
data loss transformations such as adding black dots [12]. 
Among the region-based transformations, the one with 
precedent in previous research that transforms only a part of a 
region is the data loss transformation that adds black dots, and 
the region is selected randomly. We focus on the selection of 
the region to be transformed and propose the framework to 
efficiently generate follow-up test images that are more prone 
to misclassification than the random selection method. 

B. Explainable AI (XAI) 

When people make decisions, they explain their reasons, 
but the DL-System provides no reasons for prediction. It is 
dangerous to rely on the black box system without 
transparency. Therefore, AI that can explain why it makes the 
prediction, which is called Explainable AI (XAI), is a hot topic 
in research. In particular, XAI for convolutional neural 
networks (CNN) [13] has been widely studied, and XAI for 
CNNs can visually explain which pixel was used as the basis 
for the prediction.  

Grad-CAM [5] is one of the XAI for CNN. It is a method 
that specifies the gradient which means the importance of the 
prediction as a heat map. It can provide us with the gradient of 
each class from an image by using the loss of probability of 
each class and the output of the last convolutional layer. Fig. 
3 shows a visual explanation for the original image (Fig. 3.a). 
The red region on the heat map is a high-gradient region. The 
high gradient region which is mainly distributed on the face in 
the image (Fig. 3.b) means that the region had a strong 
influence on the prediction that the class is a tiger. On the other 
hand, the high gradient region which is mainly distributed on 
the legs in the image (Fig. 3.c) means that the region had a 
strong influence on the prediction that the class is tiger cat. 
Thus, Grad-CAM can provide the gradient heat map for each 
class for a single image.  

Let the output value at the (𝑖, 𝑗) coordinates of the k-th 
feature map within the last convolutional layer be denoted as 
𝐴𝑘(𝑖, 𝑗), and let the predicted probability for class c be 𝑦𝑐. The 
Grad-CAM’s gradient 𝐿𝑐(𝑖, 𝑗)  at the coordinate (𝑖, 𝑗)  is 
computed using the following equation: 

𝐿𝑐(𝑖, 𝑗) = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘
𝑐

𝑘

𝐴𝑘(𝑖, 𝑗)) (1) 

 
Here, 𝛼𝑘

𝑐  represents the gradient indicating the extent to 
which the change at the coordinate (𝑖, 𝑗) affects the predicted 
probability for class c. When 𝑍 = ∑ ∑ 1𝑗𝑖 , 𝛼𝑘

𝑐  is calculated 

using the following equation: 
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In this paper, 𝐿𝑐 is referred to as the gradient for class c. 

Although there are several other XAI methods for CNN, 
Fan et al. showed that Grad-CAM is one of the best XAI 
methods. [14] 

III. APPROACH 

Our approach aims to efficiently test regions with a high 
likelihood of misrecognition by applying existing natural 
metamorphic transformations, thereby enabling reliable 
testing. The transformation of images is determined by which 
region is changed and how the region is changed. Generally, 
MT transforms the region naturally, regardless of which 
regions are altered, to test for reliability. For instance, tests are 
conducted by adding black dots to verify whether 
misclassification occurs in natural situations, such as when 
leaves or dust appear on the image. Additionally, tests 
involving brightness changes or gaussian noise assess whether 
misclassification occurs in natural situations with 
environmental light or camera noise. Thus, MT typically 
involves the addition of natural situational changes to test 
reliability.  

 Our method adopts an approach that efficiently tests 
regions prone to misclassification by determining which 
regions to change using Explainable Artificial Intelligence 
(XAI). While it is technically possible to determine how the 
region is changed so that it is more likely to be misclassified, 
such transformations are called adversarial attacks and test 
security rather than reliability. Consequently, our study 
exclusively focuses on an approach that utilizes XAI to 
determine which regions to transform. 

Grad-CAM is a technology to calculate the importance of 
prediction by gradients. It can calculate which regions are 
highly sensitive regions that had a significant impact on the 
predictions. For example, the red region in Fig. 2 (b) which 

Fig. 3. A visual explanation by Grad-CAM. 

Fig. 4. A specified gradient for each class to a seed image. 
 



shows the highest gradient region is the most sensitive. Our 
approach is “more gradient, more misclassification”. 

Grad-CAM should hence be applied to MT. If our method 
transforms a high gradient region specified by Grad-CAM, 
misclassification is likely to happen. We call it Sensitive 
Region-based MT, (Sensitivity-MT). 

IV. METHODS 

A. Overview 

The overall design of our framework is shown in Fig. 5. 
Our framework consists of three stages. First, in Stage 1, 
gradients for each class are identified as a heat map. Next, in 
Stage 2, we specify sensitive regions for transformation based 
on the gradient heat maps specified in Stage 1. There are three 
methods of specifying the sensitive region. (Three methods 
are discussed in more detail below  (IV.C)). Finally, in Stage 
3, rectangle regions for transformation are decided based on 
the sensitive region, and the rectangle regions are transformed 
based on the MR. 

B. Stage 1: Specifying the gradient for each class 

In Stage 1, we simply apply Grad-CAM to the seed image 
and specify the gradient for each class. Fig. 4 shows an 
example of identified gradients for each class from a seed 
image of a house finch class. The gradients are obtained as a 
heat map. This means that Lc in equation (1) is obtained for 
all classes c. 

C. Stage 2: Specifying the sensitive region 

Since gradients were identified for each class in stage 1, 
there are as many gradient heat maps as there are classes. In 
Stage 2, one sensitive region is specified based on the 

gradients. It is hoped that transformation within the sensitive 
region would make it prone to misclassification. When 
specifying the sensitive region from gradients, it is not clear 
which class‘s gradients are more important and how should 
we specify the sensitive region. Therefore, we propose three 
Sensitivity-MTs that use different specifying sensitive region 
methods. The three methods are named the max selection 
method, the avg selection method, and the best selection 
method. The three methods generate heat maps of the sensitive 
regions. 

1) The max selection method (Max Selection) 
The max selection method superimposes heat maps of 

gradients and takes the maximum value, as shown in Fig. 6. 
Each pixel on the heat map has a value between 0 and 1 
representing the gradient, with blue color as it approaches 0 
and red as it approaches 1. A heat map of the sensitive region 
is generated by taking the maximum gradient for each pixel. 
Pixels on the heat map with importance values less than a 
gradient threshold are removed from the sensitive region. The 
larger the threshold, the smaller the sensitive region. 

When the threshold is t and the set of all classes is C, the 
sensitive region ( 𝑅𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 ) is represented by the set of 
sensitive coordinates as follows. 

Rsensitive = {(𝑖, 𝑗) |  𝑡 ≤ max
𝑐 ∈ 𝐶

 (𝐿𝑐(𝑖, 𝑗))} (3) 

 

This approach is based on the idea that the region where 
gradients of all classes are high should be sensitive regions. 

Fig. 6. A workflow for selecting the region for transformation using 

the max selection method. 
 

Fig. 7. A workflow for selecting the region for transformation using the 

average selection method. 

Fig. 8. A workflow for selecting the region for transformation using 

the best selection method. 
 

Fig. 5. Overview of our framework. 



2) The Average selection method (Avg Selection) 
The average selection method superimposes heat maps of 

gradients and takes the average value, as shown in Fig. 7. The 
Average selection method differs from the Max selection 
method only in that it takes the average value instead of the 
maximum value. 

The sensitive region (𝑅𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒) is represented by the set 
of sensitive coordinates as follows. 

Rsensitive = {(𝑖, 𝑗) |  𝑡 ≤ mean
𝑐 ∈ 𝐶

 (𝐿𝑐(𝑖, 𝑗))} (4) 

 

This approach is based on the idea that the regions with 
high gradients common to many classes should be the 
sensitive regions. 

3) The best selection method (Best Selection) 
The best selection method selects a heat map of the class 

with the highest prediction probability as shown in Fig. 8. 
Pixels on the heat map with importance values less than the 
gradient threshold are removed from the sensitive region. 

When the class with the highest prediction probability 
is 𝑐𝑏𝑒𝑠𝑡 , the sensitive region (𝑅𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒) is represented by the 
set of sensitive coordinates as follows. 

Rsensitive = {(𝑖, 𝑗) |  𝑡 ≤ 𝐿𝑐𝑏𝑒𝑠𝑡
(𝑖, 𝑗)} (5) 

 

This approach is based on the idea that the region where 
the gradient of the class with the highest prediction probability 
is high should be the sensitive region because decreasing the 
prediction probability of the class with the highest prediction 
probability can lead to misclassification. 

D. Stage 3: To decide on regions for transformation and  

transform the regions. 

In Stage 3, transformations are based on MR. The 
candidate rectangle regions for transformation are determined 
as shown in the blue box in Fig. 9. This is based on the 
Rsensitive generated in Stage 2. 

The rectangle region has arbitrary width and height based 
on each pixel in the red area of Fig. 9. If all pixels in the 
Rsensitive  are used as a base pixel, the number of rectangle 
regions would be too large, so a stride is set to reduce the 
number of base pixels as shown in Fig. 9. 

For transformations based on MR, the method proposed in 
previous studies that can transform any one region can be 
applied as is. For example, the methods of adding black dots 
and transforming color tones can be used. 

V. EXPERIMENTS 

A. Preparation 

We conducted experiments to evaluate two RQs. Before 
the evaluation, we prepared an image recognition AI as SUT. 
It is a pre-trained VGG16 [15] model in Keras 2.10.0, which 
classifies 999 classes of images in ImageNet [4] (class 
n04399382" is missing due to ImageNet). We prepared 999 
seed images which are correctly classified into different 
classes by the SUT. The experiment worked on a PC with an 
Intel Core i7 10400F CPU, RTX 3060 Ti GPU, and 16 GB 
RAM. 

 Misclassification by MT is generally affected by the 
number of regions, position of regions, size of regions, and 
type of metamorphic transformation. The purpose of our 
experiment is to validate how sensitivity affects 
misclassification by comparing the positions of transformed 
regions between a baseline MT method and our sensitivity-
based MT framework. We selected a baseline MT method, the 
Random Selection method from DeepXplore[12], which 
randomly selects the positions of regions to be transformed. 
Although DeepXplore originally selects multiple regions, the 
number of regions for the baseline and our framework should 
be limited to the same number of regions, i.e. limited to one 
single region in this experiment. We specified that the size of 
regions is 10 x 10 pixels, and picked color inversion, hole, 
brightness, blurring, and Gaussian noise as types of 
metamorphic transformation. Fig. 10 shows examples of the 
transformation. The thresholds in our three Sensitivity-MTs 
were 0.9 and the strides were 5 pixels.  

B. Correlation analysis between sensitivity and FDR (RQ1) 

To evaluate RQ1, "Can Grad-CAM properly indicate 
sensitive regions?", we should analyze the correlation between 
the sensitivity and the FDR in our three Sensitivity-MTs 
without the baseline. We analyzed the correlation between the 
gradient, i.e. approximated sensitivity in various positions of 
regions. Gradients were calculated in 2,497,500 regions, i.e. 
randomly selected 500 regions in 4,995 follow-up images 

Fig. 9. Decide the rectangle regions to be transformed from the 

sensitive region. 

Fig. 10. Five types of region-based metamorphic transformation. 
 



generated by five types of metamorphic transformation for 
999 seed images. The gradients of a region were represented 
by the gradients of a pixel at the center of the region. 

C. Comparison of the baseline FDR with the FDRs of our 

three Sensitivity-MTs (RQ2) 

To evaluate RQ2: "Is the FDR of our MT framework 
higher than the method that does not consider sensitivity?", we 
compared the FDR of the baseline method and the FDR of the 
three Sensitivity-MTs in the follow-up test images generated 
from 999 seed images. 

VI. RESULTS 

A. RQ1: Can Grad-CAM properly indicate sensitive 

regions? 

The answer to RQ1: Can Grad-CAM properly indicate 
sensitive regions? is positive in this experiment. 

Fig. 11 shows the correlation between the gradients in the 
regions and the FDR by each Sensitivity-MT. All the 
correlation coefficients are significantly high, that is, 0.982 for 
Max Selection, 0.962 for Avg Selection, and 0.904 for Best 
Selection. All the FDRs are monotonically increased except 
for the short range. The result suggests that the larger the 
gradient of a region, the more likely to be misclassification 

when the region is transformed. In other words, a high-

gradient region is a sensitive region. 

B. RQ2: Is the FDR in our MT framework higher than the 

method that does not consider sensitivity? 

The answer to RQ2: Is the FDR in our MT framework 
higher than the method that does not consider sensitivity? is 
positive in this experiment. 

Table. 1 shows the results of the comparison between the 
FDR of the baseline and that of our three Sensitivity-MTs. The 
# of positives indicates the number of images correctly 
classified, and The # of negatives indicates the number of 
images misclassified. FDR is calculated as the percentage of 
the number of negatives out of the total number of positives 
and negatives. The FDR/Baseline's FDR is defined as the ratio 
of the baseline FDR. All Sensitivity-MTs displayed a higher 
FDR than the baseline. The Best Selection Sensitivity-MT 
demonstrated the highest FDR, at 10.37%, which is 1.89 times 
greater than the baseline FDR.  

VII. THREATS TO VALIDITY 

This framework effectively generates images that are 
misclassified by utilizing Grad-CAM. Although this is 
efficient for the FDR, it is not necessarily efficient in terms of 
time spent; if Grad-CAM requires a longer duration to identify 
gradients, the random selection method may prove more 
efficient in the number of negatives discovered per hour. The 
time needed to specify gradients for all classes using Grad-
CAM on a single seed image increases proportionally to the 
number of classes. The Best Selection method, which 
designates the crucial region for one class, required 
approximately 0.2 milliseconds for a single seed image, while 
the Max and Avg Selection methods, which determine 
gradients for all classes (1000 classes), necessitated 
approximately 17 seconds. Considering time efficiency, the 
Best Selection method emerges as the most efficient approach. 
Consequently, time efficiency constitutes a vital aspect and an 
important challenge to address. 

VIII. CONCLUSION AND FUTURE WORKS 

In this paper, we proposed a framework that tests and 
detects misidentified images more efficiently using MT that 
transforms a region of the image. This framework can be 
combined with region-based MT from prior research, enabling 
focused testing on sensitive regions prone to misclassification. 
This is the first approach to focus on the sensitivity of the 
region on MT by using XAI, and we believe that this is the 
first step in research into the use of sensitivity for MT using 
XAI. 

Table. 1. Comparison of FDRs for the baseline and three Sensitivity-MTs 

 

    

# of  

positive 

# of 

negative 
FDR 

FDR/ 

Baseline’s FDR 

Baseline Random Selection 2360695 136805 5.48% - 

Ours 

Max Selection 730793 75787 9.40% 1.89 

Avg Selection 39369 3141 7.39% 1.72 

Best Selection 76456 8849 10.37% 1.35 

 

Fig. 11. A relationship between the sensitivity of the transformed region 

and the FDR with three Sensitivity-MTs 



In addition to image recognition AI, we plan to use 
sensitivity for video recognition AI and other applications in 
the future. 
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